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A N  ANALYS I S OF ENERGETIC 
SPACE RADIATION AND DOSE RATES 

SUMMARY 

The results presented in this report should be of practical value for 
preliminary engineering analysis of space hazards and planning of possible space 
missions €or either near-earth orbits o r  deep-space probes. The dose rate 
curves shown in this report  are based on the latest environmental analysis by 
NASA and the United States Air Force. 
continually updated as experimental data improves and as more sophisticated 
analyses a r e  performed. As such modifications become available, the authors 
of this report intend to update the radiation dose rates in future reports. 

The environmental models and data are 

I NTRODU CTI ON 

This study is intended to  present a compendium of the environmental data 
It considers the calculated tissue dose rates on trapped and untrapped radiation. 

received from these radiations and the induced secondary radiation behind var- 
ious shield thicknesses. Energetic radiation, as used here ,  refers to particles 
with energies greater than about 0 . 5  MeV. 
should be of practical value for preliminary analysis of the radiation hazard to 
man during space flight, 

The results given in this report 

The radiation environment consists of protons and electrons in the Van 
Allen belts, energetic solar radiation, and galactic cosmic radiation. The 
solar wind is not included in this study since no appreciable dose is received 
behind any nominal shielding. 

The environmental data used in this report was taken primarily from the 
works of J.  I. Vette of NASA/Goddard Space Flight Center and W. R. Webber 
of the Boeing Company. 



RADIATlON DOSE CALCULATIONS AND DEFlN ITIONS 

In this report  the radiation dose rate calculations are based on the physi- 
cal property of energy deposition at a tissue point detector located at the center 
of a spherical shell of aluminum o r  polyethylene. The units of dose are in rads- 
tissue. By definition the rad is the physical equivalent of an energy deposition 
of 100 ergs/g (0 .01  J/kg) . The assumption of a tissue point detector is an over- 
simplification and always leads to  a high estimate of the  true dose. When skin 
dose is used, the above conditions of a point detector at the center of a spherical 
shell with no self-shielding by the target should be specified. Thus, if an astro- 
naut is placed at the point detector location he would receive considerable self- 
shielding from the rest of his body. In general, the skin doses should be about 
a factor of two lower on a man target than shown in the curves of this report. 
(This will also apply t o  depth doses at 5 cm or less inside the  man. ) In the 
present report depth doses were derived when a sphere of tissue was placed 
about the point detector; the depth indicates the radius of this sphere. 

In this work the presented proton dose rate calculations include both 
primary protons and associated secondary particles. The secondary particle 
dose component for thin shields can be approximated fairly well by ignoring the 
attenuation of the primary flux because of inelastic collisions [ 13, 

The units of shield thickness throughout this report are given in grams 
per  square centimeter , which may be converted to centimeters by dividing this 
thickness by the material density ( g/cm3). 
g/cm3; thus, 2 . 7  g /cm2  of aluminum is one centimeter thick. The use of grams 
per square centimeter thickness has historical precedence in charged particle 
transport calculations and indeed is quite convenient for two reasons. First, in 
te rms  of this unit the penetration characteristics of charged particles a r e  almost 
the same in all materials (hydrogen is the only exception) ; second, the mass  o r  
weight of a shield can be found for a simple geometry by multiplying the shield 
thickness by the surface area of the shield. 

For example, aluminum p = 2 . 7  

The most important question that arises in the radiation area is the 
number of rads that a man, photographic film, or instrument can receive before 
damage is caused o r  detected. of course, this is not always an easy question to 
answer. For example, very fast film may be damaged beyond feasible use after 
a one-rad exposure , whereas other films may tolerate 50 or  more rads. Thus , 
each film type has to  be investigated regarding its use and possible radiation 
exposure. Most electronic devices can tolerate very large doses before- serious 
degradation of performance results. Such doses will not be encountered from 
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natural space radiations for periods of less than one year  if the device is behind 
a shield of one centimeter of aluminum. Solar panels and thermal coatings on 
spacecraft may be damaged by the large surface doses they receive from low 
energy electrons and protons. 

If man is involved in space flight, his safety from radiation damage should 
be the f i rs t  consideration. The following outline of human responses to an  expo- 
su re  in rads  is given as a guide [2] .  
be considered as an official NASA document, but it is felt by the authors to reflect 
the extent of the radiation problem better than a table of acceptable dose levels: 

Such a memorandum, of course,  cannot 

A .  Gastrointestinal dose - The dose required to produce nausea 
in 10 percent of the crew = 25 rads. 

B. Skin dose - The dose required to produce erythema in 10 
percent of the crew (may produce temporary loss  of hair)  = 
200 rads. 

C .  Hematological dose - The does required to produce a 20 
percent depression of leukocytes and/or thrombocytes = 50 
rads.  

D. Eye dose - The dose required to  produce a 5 percent incidence 
of clinically significant cataracts = 80 rads.  

The writers of this memorandum suggested that the ?IPlanning Operational Dose" 
should be exactly one-half the above outlined doses at the various locations in 
the body. 
exposure levels were selected according to the following operational cri teria:  

The 'Waximum Operational Dose" is that given above. The radiation 

Planning Operational Dose (POD) : The dose which should not be 
The exceeded without requiring a mission modification of some degree. 

degree of modification will be a function of the magnitude of the excess 
dose and will be formulated by mission rules.  This dose will be used 
for mission planning purposes to  determine if proposed trajectories and 
time lines are acceptable. 

Maximum Operational Dose (MOD) : The dose which should not be 
exceeded without specific modification of the mission to prevent further 
radiation exposure. 
potentially harmful ihflight response in t e rms  of crew safety and post,- 
flight response in te rms  of delayed radiation injury. 

Such a n  exposure. would be considered to  result in a 
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Of course,  many factors enter into the determination of the accumulated 
radiation dose that a man can safely receive. 
25-rad gastrointestinal dose over a two-year period the effects will be much less 
pronounced than the effect of receiving the same dose over a two-week period. 
Therefore, the above listing of human responses refer to fairly short t e rm expo- 
sures where the human organism has not been capable of significant biological 
repairs . 

For example, if he received a 

Skin 

Eye 

The following doses [ 31 are established on the assumption that t h e  crew 
will be exposed t o  small  increments of dose on each orbit. No allowance is made 
for pulses of radiation received at higher intensities. Table I should - not be used 
for missions of longer duration than 60 days. 

0. I mm 

3 . 0  mm 

TABLE I. RADJATION DOSE 
~- 

Tissue I Depth 

5 .0  em I 

LIMITS FOR 30 - 60-DAY MISSIONS 
~- 

M O D  

2 .5  rads/day 5 rads/day 

i. 25 rads/day 2 .5  rads/day 

0 . 6  rad/day i. 0 rad/day 

L 

_L---- 

I€ one wishes to investigate missions of long duration (one or  two years) 
he may assume that the body does indeed repair  some of the damage; however, 
it would be presumptuous to extend the acceptable dose levels without more 
knowledge. It is conceivable that a total allowable accumulated dose may in fact 
be doubled for a mission of one o r  two years .  Such an assumption, however, 
must embody the concept of a fairly constant o r  uniform radiation exposure over 
the total period. This is probably not a valid assumption for deep space flight 
since one could conceivably receive 90 percent of his allowable dose during one 
large solar proton event lasting (at most) three days. 

It is quite valid to inquire if there has been experimental verification of 
the radiation dose computational methods. The basic parameters for proton 
and electron transport in matter (range and stopping power data) have been fre- 
quently measured experimentally and are quite valid. These basic data, however , 
are only the building blocks of the much more involved dose rate calculations. 

4 



I 

The experimental verification of proton dose rate calculations, for example, 
is not easily obtained for several reasons. 
monoenergetic, whereas flare sources have continuous energy spectra. Also, 
when a theoretical computation is made for a monoenergetic source, the energy 
band i s  depicted as a monoenergetic line; whereas in the experiment the proton 
beam may have a 5 percent energy spread. This energy spread in the source 
may have a much greater effect on the attempt to duplicate a theoretical result 
than is  commonly believed. Figure 1 illustrates the differences in proton energy 
deposition in tissue and aluminum for three different energy spreads about a 
nominal energy of 100 MeV. The source was taken as I O 8  protons/cm2 uniformly 
distributed in the energy band 100 f AE. The spiked curve was  obtained by using an 
energy spread of only h0 .005  MeV. This type of curve is  characteristic of a 
theoretical calculation, whereas the other curves of Figure 1 are typical of 
experimental results. The only effect considered in these calculations was an 
energy spread in the source. 

laboratory proton sources are usually 

FIGURE 1. MONOENERGETIC PROTON DOSE AS A FUNCTION OF DEPTH 
PENETRATED FOR VARIOUS SOURCE ENERGY SPREADS 
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In conclusion, the writers would like to  warn against the indiscriminant 
use of the parametric curves presented in this study. The dose rates in general 
should be halved in order to obtain the proper dose rate on an astronaut o r  on 
other fairly large targets. Also, since actual spacecraft configurations are not 
spherical shells,  an additional reduction in dose (as much as a factor of two) 
will be found if a realistic geometric representation is used in which shielding 
from onboard components, other astronauts, and outside structures are consid- 
ered. 
improvements may be very significant. 
radiation transport methods, see References I and 4. 

For very thin walled structures such as in the S-IVB workshop, such 
For a more detailed discussion on the 

THEGEOMAGNETiC FIELD AND CHARGED 
PARTICLE INTERACTIONS 

The geomagnetic field around the earth forms a "magnetic pocket" known 
as the magnetosphere. The boundary of the magnetosphere is determined by the 
solar wind which is assumed to be a radial expansion of t h e  sun's corona. At a 
certain radial distance above the earth,  the geomagnetic field energy density 
equals the energy of the solar wind and there is a breakdown of the magnetic lines 
of force. This turbulent region is the magnetospheric boundary or transition 
zone. In the magnetosphere the magnetic field dominates, while outside the 
magnetosphere, the solar wind is the controlling energy mechanism. 

The inner boundary of the transition region, called the magnetopause, 
occurs at about ten earth radii on the sunlit side of the  earth,  while the outer 
boundary of the transition region is in the form of a shock wave at about four- 
teen earth radii. The magnetopause around the ear th  is in the form of an elon- 
gated teardrop with a long tail pointed away from the sun. Figure 2 ,  taken from 
Ness [ 5 ] ,  shows a recent version of the magnetosphere. 

Perhaps the best way to represent the distribution of magnetically trapped 
particles about the earth is by using the B-L coordinate system developed by 
C a r l  Mcnwain [6]. The B coordinate denotes the magnetic field strength at some 
specified point in space; L is the magnetic shell parameter that labels the shell 
upon which the guiding center of the trapped particle is adiabatically confined as 
it drifts around the earth.  The L coordinate is approximately constant along a 
geomagnetic field line. In a dipole field, L is constant along the field line and 
has the geometric property of being the equatorial distance from the dipole cen- 
ter t o  the magnetic field line. The geometry of the B-L coordinate system is 

6 



RESULTS OF IMP-I MAGNETIC FIELD EXPERIMENT (11/27/63 TO (5/31/64) 

- ---- 
MAGNETOSPHERE 

SOLAR WIND --- 
€ET 

DISTANCES IN EARTH RADAi 

' \  
PROJECTION OF MAGNETIC FIELD TOPOLOGY VAN ALLEN RADIATION BELTS 
IN NOON MIDNIGHT MERIDIAN PLANE 

FIGURE 2. RECENT SATELLITE VERSION O F  T H E  MAGNETOSPHERE 
BASED ON RESULTS O F  IMP-1 MAGNETIC F I E L D  E X P E m M E N T  

(NOVEMBER 27, 1963,  T O M A Y  31,  1964) 

depicted in Figure 3. 
latitude and altitude of a point above the earth by the following: 

For a dipole field the B-L  coordinates are related to the 

where M is the magnetic dipole moment ( 0 .  311653 gauss R '), R is the distance 

in earth radii units from the center of the earth,  A is the geomagnetic latitude, 
and R is the radius of the earth.  These relations should be used with caution 

since the earth's field cannot be depicted as a simple dipole. 

e 

e 
If the magnetic 
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SURFACES OF CONSTANT B 

FIGURE 3. THE GEOMETRY OF THE B-L COORDINATE SYSTEM 
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dipole approximation is used, it should be represented by the more accurate 
tilted and translated dipole instead of the centered dipole. 

The magnetic field of the earth alters the penetration of charged particles 
to the vicinity of the earth. The theory of the allowed cone of incident charged 
particles, as developed by St'drmer [ 71 , can be used as a basis for calculating 
the modification of an incoming energy spectrum of cosmic rays or solar f lare 
protons. 
The allowed cone is defined by: 

The theory is based on a dipole approximation of the geomagnetic field. 

60 x io3  C O S ~ A  = 
R2( I + d i - C O S % C O S ~ ) ~  

where R and A are defined as in equation ( I) ; p is the magnetic rigidity (momen- 
tum/charge) in megavolts ( M V  units) : and y is the half angle of the allowed 
cone about the normal to the meridian plane [ 81 . 
cone varies with the energy of the particle and with the position of the observa- 
tion point [ 91. 
found by multiplying the external spectrum by the solid angle fraction of the 
allowed cone as a function of the particle energy. 

The angle of the allowed 

The modified energy spectrum inside the magnetosphere is 

A computer code has been developed by J. J. Wright to calculate the time 
weighted modified energy spectrum on any feasible earth orbit by varying the 
energy (angle) over the allowed cone and weighting each energy (angle) by the 
time spent at each position in orbit"'. 
cosmic rays and fo r  the November 12, 1960, solar flare will  be shown in the 
following two sections. 
these cases. 
MeV of the particle as follows: 

The modified energy spectra for galactic 

Shadowing effects of the earth w e r e  not considered in 
The magnetic rigidity in MV is related to the kinetic energy E in 

E2 + 2ME 
q 

where q is the total charge, M is the particle rest mass  energy (MeV) , and E 
is expressed in MeV. 

Equation 3 is plotted in Figure 4 for proton and alpha particles. For 
E 5 100 MeV, p = W E /  q = 4 3 . 5  , and for E 2 IO5 MeV, p M E/q. 

4, 1. 

For  a discussion of methods see reference [IO]. 
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I 
KINETIC ENERGY (MeV) 

- 

'PRTICL 

i 
i 

FIGURE 4. RIGIDITY AS A FUNCTION OF KINETIC ENERGY 
FOR PROTONS AND ALPHA PARTICLES 

Combining equations ( i) , (2 )  , and ( 3 )  for  y = 90' , and solving for the 
kinetic energy E (MeV) , the vertical cutoff energy for  protons is found to  be 

2.25  x io8 cosa& 
R4 

E = -938 + J (938)'  -i- 
C 

The so-called vertical cutoff energy signifies that particles coming from the 
zenith and having energies greater than E will intercept a given point ( R ,  A) . 
Figure 5 shows the variation of the vertical cutoff during solar active periods 
and quiet time [ 91. A plot of the proton vertical cutoff energy is also shown in 
Figure 5 for various ear th  radii  and latitudes for quiet times. The trapped 
radiation belts will be discussed further in later sections of this report. 

C 
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FIGURE 5. VARIATION O F  PROTON VERTICAL CUTOFF ENERGY 
DURING A S O U R  ACTIVE PERIOD AND AS A FUNCTION OF 
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GALACTIC COSMIC RADIATION 

The galactic cosmic radiation is composed of about 85 percent protons, 
14 percent alpha particles , and about I percent heavier nuclei with energies 
ranging from I O 7  to IOig eV, with an average energy of about I GeV. The free 
space proton flux at solar maximum is about 2 . 5  protons/cm2-sec and about 
twice this a t  solar minimum. 

The differential energy spectrum [ t i ]  for protons and alpha particles 
is shown in Figure 6 .  The galactic cosmic ray dose rate (including secondaries) 
a s  a function of shield thickness is also shown in Figure 6 .  A spacecraft having 
an average thickness of 6 g/cm2 of aluminum would receive a total dose of 

I 
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FIGURE 6. GALACTIC COSMIC RAY DLFFERENTIAL ENERGY SPECTRA 
AND DOSE RATES BEHIND ALUMINUM SHIELDS 
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7 . 2  rads/year during solar  minimum. At solar maximum the dose rate could be 
reduced by a factor of two. However, if one uses the modified energy spectrum 
as computed by the technique described on page 9, the total dose from cosmic 
radiation in a 30-degree, 240-nautical mile circular orbit would be on the order 
of 0.20 rad/year. Figure 7 shows the modified cosmic ray dose rate for protons 
plus secondaries as a function of orbital inclinaticn on a 240-nautical mile circu- 
lar orbit for  an aluminum shield thickness of 10 g/cm2. 
include earth shadow effects. 

This graph does not 

5.1 

4. 

e. 3. 

E 
g 2  

t - 
L 
W 

I 

ORBIT INCLINATITION 

/ 

FIGURE 7. TOTAL COSMIC RAY 
PROTON DOSE RATE AS A FUNCTION 

O F  ORBITAL INCLINATION 

Results by some writers have 
implied that the dose rate is higher by 
a €actor of two; however, insufficient 
data on their proton energy spectrum 
makes a comparison impossible. 

SOLAR COSMIC RADIAT 

The radiation intensity from 
solar flare activity follows an approx- 
imate i i -year  cycle with enormous 
flux variations ranging from about io5 
protons/cm2 at solar minimum to 
approximately io9 protons/cm2 per 
f lare  at  solar maximum for  protons with 
energy above 30 MeV. 
ation intensity will also vary with dis- 
tance from the sun. 
solar proton data a re  assumed to be 
for a radial distance of one astronom- 
ical unit. 

The solar radi- 

The following 

Solar cosmic radiation has two 
main components - protons and alpha 
particles in a proton-to-alpha ratio 

varying from I to 100. There is also a minor component of heavier nuclei which 
makes up about 0. I percent of the total. 

13 



The typical intensity-time profile for various rigidities i n  a solar cosmic 
ray event is shown in Figure 8. ( Webber [ 121 provides detailed discussion.) 

t TIME - 
OPTICAL FLARE 

FIGURE 8. TYPICAL INTENSITY-TIME PROFILES DURING 
A SOLAR COSMIC RAY EVENT 

The intensity follows an exponential increase to  I at t = 0 and an exponential 

decay beyond maximum intensity. The integrated intensity above a given energy 
is calculated using the characteristic rise and decay times given by 

max 

14 



0 00 

J ( > E )  = S I  (>E)exp  (- i ) d t  + SI max (>E)exp  (-<) dt 
R 0 max -co 

where I is the maximum intensity at time t = 0;  t = rise time; and t = 

decay time. 
max R D 

The time integrated spectrum describing the flux for a given event is 
given by 

where po (MV) is the characteristic rigidity, and No is  a constant determined 
from po and J(>p) . Caution must be used in applying the same spectrum down 
to low rigidity values (<30 MeV) .  

To calculate the differential spectrum in M e V  units using equation ( 6 )  
[ 13 , it is sufficient to use the relationship 

and the Jacobian I I t o  obtain, 

@(E) = x e x p  (- E) l%l * 
particles 

Po cm2 - MeV - Flare 

or 

)exp (-dELo;2ME) particles 
cm2 - M e V  - Flare @(E) = 

where p is  the rigidity (momentum/ charge) in MV units, E is  kinetic energy 
(MeV) , q is the charge, and M is  the rest mass energy (MeV)  . Thus, for  pro- 
tons, q = I, and M = 938 MeV; for alpha rays,  q = 2, and M = 3727 MeV. 

A l is t  of the solar proton events [ 121 used in this study i s  shown in Table 
11. The solar proton events in Figure 9 represent the cases where the skin dose 

15 



TABLE 11. INTEGRAL PROTON FLUX ( PROTONS/cm2-FLARE) AT 30 
AND 100 MeV WITH CORRESPONDING CHARACTERISTIC RIGIDITY Po AND No 

Date 

2/23/56 
8/  3/ 56 

1/20/57 
8/29/57 
1 0/2 0/57 

3/23/58 
7/7/58 
8/ 16/58 
8/22/58 
8/ 26 /58 
9/22/58 

5/ i0/59 
7/10/59 

7/16/59 

t/ 1/6 0 
t/28/60 
j/4/60 
5/13/60 
1/3/60 
1/26/6 0 

11/ i2/6 0 
L i/ 1 5/6 0 
.1/20/60 

'/ 11/6 1 
/ 12/6 1 
/18/6 1 
/20/6 1 
1/28/6 1 

0/23/6 2 

7/14/59 

J( >30MeV) 

1.0 x io9 
2 .5  107 

2.0 x 108 
1.2 x io8 
5. o x io7 

2 .5  x 108 
2 .5  x 108 
4. o io7 
7 .0  x io7 
1. 1 x i o 8  
6 . 0  x IO6 

9.6 x 108 
1. o 1 0 9  

i. 3 109  

9.1 x 108 

5.0  x 106 
5.0 x 106 

4.0  x 106 
3.5  x 107 

2.0 x 106 

1.3 109 

4.5 x io7 

6 .0  x IO6 

7 . 2  x 10' 

3.0 x io6 
4. o x 107 
3.0 x 108 
5.0 x 106 
6 . 0  x 106 

1 .2  x io5 

J( > 1 OOMeV) 

6 .0  x IO6 

-~ 

3.5 x i o 8  

7 . 0  x 106 
3.0 x 106 
i. o x 107 

I. o x io7 
9.0 x 106 

2.0 x 106 
1.0 io5  

1.6 x IO6 
1.8 x 106 

8 .5  107 
1.4 x 108 
1. 0 x 108 
1. 3 x io8 

8 . 5  x I O 5  
7. o x i o 5  
1.2 x 106 
4.5 105 

i. 2 x io5  
2 .5  x 108 
1.2 x 108 

7 . 0  x I O 6  

8.0 x 106 

2.4 x io5 
1. 0 x 106 
4. o x 107 

9. o x io5 
1. 1 x 106 

1.0 x io4 
- 

195 
144 

61 
56 

127 

64 
62 
64 
56 
51 
50 

84 
104 
80 

105 

116 
1 04 
1 27 
94 

127 

7 3  
124 
114 
118 

81 
56 

102 
120 
121 

83 

NO 

3.41 x 109 

1. 32 x 10' 

1. 02 x 1010 
8.49 x io9 
3.30 x 10' 

i . 0 4 ~  ioio 
1. 18 x ioio 
1.67 x io9 
5.02 x io9 
1 .21 x 1oio 
7 .21  x io8 

1. 00 x 1010 
2.59 x 1010 

1.67 x 1010 

8.92 x I O 9  

3.93 x 107 
5.01 x 107  
3.96 107 
5. a9 x i o 7  
2.31 x io8 
5. 29 x 107 

5.89 x 1 0 9  

5.77 x 107 
2.83 x io9 
3.13 x 109 

4.33 x 1 0 7  

8.98 x IO9 

3.44 x i o 8  

3.66 x IO7 

2.13 x 10' 
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FIGURE 9. TOTAL PROTON SKIN DOSE BEHIND ALUMINUM SHIELDS 
FOR SEVERAL SOLAR FLARES 

received behind 5 g/cm2 aluminum shield is greater than about I rad. Figure 10 
depicts solar cosmic ray doses at the blood-forming organs. Table III presents 
a summary from the above graphs. The proton skin dose behind polyethylene 
shields for the seven largest  solar cosmic ray events is shown in Figure 11 and 
summarized in Table IV. 

Figures 9 to 11 represent free space doses due to solar f lare particles. 
Because of the geomagnetic field cutoff, the doses can be reduced by one or more 
orders of magnitude. Figure 12 depicts the modified energy spectra and corres-  
ponding dose rates for the November 12, 1960, flare on a 240-nautical mile cir- 
cular orbit for various orbital inclinations. For an inclination of 45degrees the 
dose is a constant of 0.0003 rad/flare. These dose values do not include earth 
shadow effects. 
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TABLE 111. TOTAL ESTIMATED SOLAR FLARE DOSES BY EVENT 
FOR TEN SHIELDING CONFIGURATIONS 

Date 

2/23/56 
8/ 3/ 56 

1/20/57 
8/29/57 
10/20/57 

3/23/58 
7/7/58 
8/ 16/58 
8/22/58 
8/26/58 

5/ 10/59 
7/ 10/59 
7/14/59 
7/16/59 

9/3/60 
11/12/6 0 
I l/l 5/6 0 
11/2 0/6 0 

7/ 12/6 I 
7/18/61 

280.00 
8.50 

122.00 
77.00 
18.50 

148.00 
150.00 
23.70 
45.00 
75.00 

470.00 
420.00 
650.00 
382.00 

13.00 
484.00 
288.00 

17.30 

25.70 
128.00 

2/ 0 

181.00 
5. 00 

43.50 
25.10 
10.30 

53.60 
53.70 

8.60 
14.90 
23. 10 

211.10 
214.00 
284.50 
194.80 

7.20 
269.60 
151.90 

9. 50 

8.40 
64.20 

Shielding Configuration 

5/ 0 

91.80 
2.20 

8.30 
4.20 
4.10 

10.90 
10.50 
I. 80 
2.50 
3.40 

59.30 
73.20 
75.90 
67.20 

2.90 
105.50 
55.90 

3.60 

1.40 
21.60 

10/0 

50.20 
1.00 

I. 80 
0.80 
I .  80 

2.50 
2.30 
0.40 
0.50 
0.50 

18.30 
27.40 
22.30 
25.30 

1.20 . 
44.90 
22.40 
I. 50 

0.30 
8.00 

20/0 

24.80 
0.40 

0.30 
0.10 
0.70 

0.40 
0.40 
0.10 
0.10 
0.10 

4.40 
8.40 
5.00 
7.80 

0.50 
16.20 
7.50 
0.05 

0.03 
2.40 

1/5 

64.78 
1.39 

3.42 
1.63 
2.53 

4.67 
4.38 
0.75 
0.96 
1.19 

30.18 
41.56 
37.56 
38.30 

1.77 
64.53 
30.04 
2.14 

0.54 
12.16 

2/5 

58.00 
I. 2 1  

2.57 
I. 20 
2.17 

3.55 
3.30 
0.57 
0.71 
0.85 

24.28 
34.65 
30.00 
31.98 

I. 52 
55.12 
27.91 
I. 82 

0.40 
10.11 

5/5 

43.75 
0.85 

I. 23 
0.54 
I. 46 

1.75 
I. 60 
0.28 
0.32 
0.36 

13.60 
21.76 
16.75 
20.16 

0.10 
36.87 
18.14 
I. 20 

0.18 
6.30 

l0 /5 

30.40 
0.53 

0.46 
0.19 
0.88 

0.69 
0.61 
0 .11  
0.11 
0.11 

6.70 
11.84 
7.80 

11.03 

0.06 
21.83 
10.33 
0.69 

0.06 
3.39 

20/5 

17.90 
0.27 

0 .11  
0.04 
0.41 

0.17 
0.15 
0.03 
0.02 
0.02 

2.10 
4.80 
2.50 
4.50 

0.03 
10.05 
4.49 
0.31 

0.01 
I. 35 

'" Shielding configurations are given as X/Y where X = shielding th ichess  in g/cm2 of aluminum and 
Y = shielding thickness in g/cm2 of tissue. 
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TABLE IV. TOTAL ESTIMATED SOLAR FLARE DOSE 
BEHIND POLYETHYLENE SHIELDS 

Date I 2 5 10 15 20 
- 

2/23/56 226.8 141.5 68 .4  35.7 23. 1 16. 5 

5/10/59 317.8 134.1 33.6 9 . 3  3. 8 I. 9 
7/10/59 303.0 145.7 45.5 15.5 7 . 5  4.2 
7/14/59 435.0 177.5 42.1 11.0 4.4 2 . 1  
7/16/59 275. 2 133.0 41.9 14.4 7 . 0  4. 0 

11/12/6 0 366. I 192.4 69.8 27. 5 14.7 9 .0  

Shield Thickness 

11 I/ 15/6 0 

1 

210.0 106.0 35.9 13.3 6.8 I 4.0 

The November 12, 1960, proton spectral shape was somewhat controver- 
sial. 
from that of W. R. Webber (Table 11) for energies below 100 MeV. Figure 13 
is a comparison of skin doses using both Webber's and Masley's energy spectra.  

The energy spectrum obtained by A. J. Masley [ 131 differs considerably 

The differential energy spectrum used by Masley is given by 

J( E) = I. 77 x 1013E-3 cm-2MeV-1 ( 3 0  5 E 5 80 MeV) 

J( E) = 9.62 x 1016E-5 cm-2MeV-1 ( 80 5 E 5 440 MeV) ( 8) 

J( E) = 6.63 x 1018E-5. 4cm-2 M e V i  (440 5 E 5 6600 MeV) . 

When comparing the results in the above figures, note that, using an 
aluminum shield of 6 g/cm2, the dose at the blood-forming organs ( 5  cm of tissue) 
would be approximately the same for both spectra.  

Figure 14 shows a parametric study of the dose received behind an alum- 
inum shield for various values of the characteristic rigidity, po. The proton 
integral spectrum in these calculations is given by 

9 protons 
J(>P) = N 0 e q  (-;I = 10 cm2 ( E  > 30 MeV) 

2 1  
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FIGURE 12. MODIFIED DIFFERENTIAL ENERGY SPECTRUM AND 
CORRESPONDING DOSE FOR THE NOVEMBER 12, 1960, SOLAR FLARE 
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and the characterist ic rigidity, po, is given for values between 50 and 200 Mv. 

Alpha particles seem to have about the same rigidity characteristics 
as protons. 
tion of proton-to-alpha ratio 141. 

Figure 15 illustrates the characteristic rigidity plotted as a func- 

ALUMIMJM SHIELD THICKNESS (p/cm? 
P/a 

FIGURE 14. TOTAL PROTON SKIN FIGURE 15. CHARACTERISTIC 
DOSE BE HIND ALUMINUM SHIELDS RIGIDITY AS A FUNCTION O F  

FOR VARIOUS CHARACTERISTIC PROTON-TO-A LPHA RATIO 
RIGIDITY VALUES 
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I 

To evaluate the radiation dose derived from alpha rays,  the large flare 
of July I O ,  1959, was used. If alpha particles have the same rigidity as protons, 
the proton-to-alpha ratio for the above flare is about 2. The alpha rays '  integral 
spectrum is given by 

J(> p) = 5 x iogexp (- J-) - alphas 
104 cm2 - Flare ' 

The above alpha-ray energy spectrum was used for the comparison of 
the proton and alpha-ray skin dose as a function of aluminum shield thickness 
in Figure 16. 
a factor of 10 above the alpha dose. 

For an aluminum shield thickness of 4 g/cm2, the proton dose is 

~LUMINUM SHIELD THICKNESS ( 0  /cm') 

FIGURE 16. A COMPARISON OF 
PROTON AND ALPHA RAY SKIN DOSE 

AS A FUNCTION O F  ALUMINUM 
SHIELD THICKNESS 

PREDICTION OF SOLAR 
PROTON EVENTS 

Because of the importance of 
solar protons in the manned space 
flight program, it seems justifiable t o  
discuss the methods and status of flare 
predictions. Many statistical studies 
have been undertaken, but not too much 
reliance can be placed on these studies 
since the sample of data is rather small. 
It should be pointed out that each flare 
differs from all others so that no exact 
relationship exists between observable 
features. A proper statistical analysis 
must involve a large number of events 
to permit specific statements about 
flare occurrence , duration, and inten- 
sity. 

Because of the rotation of the 
sun there exists an east-west asym- 
metry of solar proton events. 
events occurring on the Eastern Hemi- 
sphere of the sun, the probability of 
solar protons reaching the earth is one-- 
third that of events occurring on the 

For 
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the Western Hemisphere [ 121. 
the corresponding onset, r ise ,  and decay t imes are three times greater than that 
of events on the western half, giving astronauts more  time to prepare for the 
oncoming event. 

If an event does occur on the Eastern Hemisphere 

The presence and development of an active region with its associated 
sunspots and complex magnetic field is a basic par t  of the process which leads 
to a solar  cosmic ray event. Thus, it is found that there are two aspects of 
primary importance for  flare prediction [ 151 and warning capabilities. These 
are ( 1) the persistence of single active centers,  and ( 2 )  the magnetic configura- 
tions of these active centers. Regarding the persistence of single active centers ,  
Guss [ 161 has pointed out that a single fixed location in solar longitude produced 
most of the major events in cycle 19. During a period of over five years  ( more 
than 73 rotations) , several active centers grew and died in this same local region 
on the sun. These major events included the events of February 23, 1956, July 
1959, November 1960, and July 1961. About 75 percent of the total integrated 
particle intensity above 10 MeV came from this one "hot" location. According 
to Webber [ 121, over 90 percent of the output of the solar cosmic rays above 
10 MeV came from only eight major active centers during solar cycle 19. 
of these were associated with this one particular location. If a "hot" region exists 
and can be identified early in a solar cycle, the prediction of large events will 
probably be concerned with the study of this one region. 

Four 

According to Weddell [ 171 , there seems to  be a linear correlation between 
the smoothed sunspot number and the number of cosmic ray events, and also with 
the integrated intensity of particles above 10 MeV. The number of annual par- 
ticle events [ 121 occurring at the next solar  maximum should be about four o r  
five, with an annual integrated intensity above 10 M e V  of about i o 9  particles/cm2 
based on results of solar cycle 19. According to Webber [ 181 the maximum sun- 
spot number should occur near the middle of 1968 and could have a value of 110- 
130. 

The distribution of the integrated flux per  event [ 171 as a function of the 
The monthly probabilities number of events for  cycle 19 is given in Figure 17. 

of events as a function of event size over the 96-month period from 1956 through 
1963 for 68 flare events is shown in Figure 18. 

Tabulated data showed that during the solar  cycles from 1942 through 
1963 (covering 76 observed events [ 171 ) , July was by far the most active month, 
with 18.4 percent; September was the second most active, with 17.1 percent; 
August was the third most active with 13.2 percent, and December, with no 
observed events, has apparently been the least  active month. 
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Dr. J. E. Norman of the 
University of Georgia [ 191 in conjunc- 
tion with'M. 0. Burrell and J. W. Watts 
developed a stochastic model for the 
prediction of expected proton doses on 
space missions beyond the earth's 
magnetosphere. In this study, the 
model was based on the available solar 
flare data from cycle 19, the last com- 
plete cycle. Point skin doses inside 
spherical shells of aluminum of 2 ,  5, 
IO, and 20 g/cm2 thicknesses were 
calculated for each of the important 
solar f lares observed during the 312 
weeks of the active period. 
tant flare was considered to be one 
which gave one rad of dose behind a 
2 g/cm2 shield. Using this data, the 
authors developed a Monte Carlo model 
based on four assumptions. These 
as  sump tions were : 

An impor- 

i .  The size and number 
of flares in any future 
active period were based 
on the distribution of the 
19th cycle flares. 

5 0.1% I 

I 10. IO" 10' 10' io9 I 
I +  INTEGRAL FLUX [Protons/cmz) 

D 

FIGURE 18. MONTHLY PROBABILITY OF A PROTON EVENT 
AS A FUNCTION OF EVENT SIZE 
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2. An event was assumed to consist of one , two, or three flares 
in the period of a week in the same ratios observed in the 19th 
cycle. There were 31 flares in the 19th cycle making up 25 weekly 
events consisting of 20 single f lares ,  4 double flares , and I triple 
flare. 

3. Flares making up an event were of the same size.  

4. The events were distributed randomly in time over the 6-year 
active period. 

The individual weeks of a mission were generated by random sampling based on 
these assumptions. Twenty thousand missions were generated, and a cumula- 
tive probability distribution was formed. Figure 19 shows these distributions 
for missions of 2 and 52 weeks for the four shielding thicknesses. Figure 20 
shows dose vs shield thickness for the given cumulative probabilities. 
example, in Figure 20 the 95 percent curve means that 95 percent of the missions 
had doses below those shown. 

For 

TRAPPED PROTONS 

The proton environmental data used in this study were taken from the 
work of James I. Vette [20] of Goddard. The proton flux above four different 
threshold energies is shown in Figures 21 and 22. These fluxes are for circular 
orbits at different altitudes above the earth for 0-, 30-, 60- and 90-degree 
orbital inclinations respectively. The skin dose rates calculated from the AP3 
spectral data are shown in Figures 23 through 2.6. The AP3 data were extended 
down to  40 MeV to obtain the proton dose rates for the 2 g/cm2 cases.  

The above proton dose calculations include primary and secondary parti- 
cles,  and the dose is computed for a point at the center of a spherical shell of 
indicated shield thickness. No self-shielding by astronauts is included; hence, 
doses are high by approximately a factor of two for  human targets. 

Figure 27 shows an isoflux plot in  the south Atlantic anomaly at an altitude 
of 400 kilometers. 
circular orbit at an altitude of 240 nautical miles as a function of time. 

Figure 28 depicts the integral flux received on a 30-degree 
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TRAPPED ELECTRON AND BREMSSTRAHLUNG RADIATION 

Dr. Vette [21] has produced a projected electron environment for 
December 1968 starting with the August 1964 AE2 electron environment. He 
decreased the number of electrons in the inner belt according to  the measurements 
of Bostron, et al. [22] , and increased the number of electrons in the outer belt 
to correspond to solar  maximum conditions. 
compared to the 1964 electron data. Figures 30 to 33 show the electron and 
corresponding bremsstrahlung dose rates for the 1968 electron environment. 
( Bremsstrahlung is the electromagnetic radiation produced by the acceleration 
and deceleration of electrons in nuclear electric fields. ) 

Figure 29 shows the 1968 data as 

The 1964 electron environmental data and the related electron and brems- 
strahlung dose rates have been placed in t h e  appendix. The 1968 data are now 
considered to be the best available environmental model for  planning purposes. 
The development of a new electron environmental model is being pursued by 
Dr .  Vette at Goddard, but may not be forthcoming until the effects of the present 
solar cycle are better known. 

A typical bremsstrahlung dose transmission curve is shown in Figure 34 
for isotropically incident electrons with an energy spectrum given by 

electrons 
cm2 - day ' 

@(>E) = 10i3exp( -2E) 

The bremsstrahlung dose is not strongly dependent on aluminum thickness, as 
shown in Figure 34. However, the bremsstrahlung is primarily of low energy 
and its intensity can be greatly reduced by adding a thin layer of lead on the 
inside of the shield. For  shields thicker than about 2 g/cm2 the bremsstrahlung 
dose is the most important radiation hazard associated with electrons. The 
isotropic incidence assumption is more valid for electrons and associated brems- 
strahlung dose calculations than a simple straight ahead approximation. 

The electron and bremsstrahlung dose rates as a function of shield thick- 
ness are shown in Figure 35 for a model electron integral spectrum given by 

with @( >O. 5) = 10'' electrons/cm2 - day and the values of E are chosen between 
0.25 and 1. 25 MeV. 0 
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SYNCHRONOUS ORB I T  RAD IATION 

The galactic cosmic rays,  solar f lare protons, and trapped electrons are 
the important dose sources at the synchronous orbit altitude. The dose rates for 
galactic cosmic rays are shown in Figure 6 of a previous section. The free space 
dose rate from solar  proton events were shown in Figures 9 to ii. Since the 
vertical cutoff for protons at the synchronous altitude is about 60 MeV, the solar 
and galactic cosmic ray dose rates will be only slightly modified. 

Figure 36 depicts the synchronous orbit electron integral flux as a function 
of energy and local time as taken from Vette [ 211 . This electron integral flux 
is given by the equation 

,- 

@(>E, B/Bo, t) = C A(t) ( B / B  ) -be  -E/Eo E N( t) electrons ( 13) cm2 sec 0 

where 

C 

b = 0 . 6 2 5  

= 9 x i o7  at solar minimum ( 1 / 2  this at maximum) 

E = 0 . 2 1 5  MeV 
0 

This equation is valid for energies greater than 0. 01  MeV.  The values of A( t) 
and N( t) for various local times are given in Reference 21.  The values of the 
above constants at 12:OO noon are A( t) = i. 00 and N( t) = 0.000. 

When the above equation i s  used, the synchronous altitude electron and 
bremsstrahlung dose rate as a function of local time and shield thickness would 
be as shown in Figure 37. The dose rates obtained by integrating over the curves 
in Figure 37 are shown as curve A of Figure 38. 

The time average electron integral flux at the equatorial synchronous 
altitude i s  given by Vette [21] as 

electrons 
cm2 sec @(>E) = 5 . 2  x i o 7  exp ( -5E) 

The electron dose rate when this average electron spectrum is used is shown as 
curve B in Figure 38.  The bremsstrahlung dose rate i s  shown as curve C in 
this figure when the above average flux is used. 
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CONCLUSIONS 

The results presented in this report should be of practical value for 
preliminary engineering analysis of space hazards and planning of possible 
space missions for either near-earth orbits or deep-space probes. The dose 
rate curves shown in this report a r e  based on the latest available environmental 
analysis by NASA and the United States Ai r  Force. The environmental models 
and data will be continually updated as experimental data improve and as more 
sophisticated analyses are performed. As such modifications become available, 
the authors of this report  intend to update the radiation dose rates in future 
reports. This is pertinent to the synchronous orbit radiation environment that 
is now being examined in greater detail by experimental space probes and 
theoretical analysis. 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Huntsville, Alabama, November 21, 1967 
124-09-11-00-62 
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APPENDIX 

The 1964 electron environmental data, now considered to  be out of date, 
have been placed in the appendix. Figure 39 shows the August 1964 electron 
flux data as a function of altitude and orbital inclination. The electron and 
bremsstrahlung dose rates that a r e  shown in Figures 40 and 43 make use of 
these data. 
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FIGURE 40. ELECTRON AND BREMSSTRAHLUNG DOSE RATE AS A FUNCTION OF 
ALTITUDE AND SHIELD THICKNESS FOR 0-DEGREE ORBITAL INCLINATION 



E 
W 

, !  

P 
z 

Y 
w 

cn 
w 

-ELECTRON DATA AE2 AUCUST 1964 WETTE) -- 3U INCLINATION CIRCULAR 

0 0.5 aRm2-AI. SHIELD 

102 -3- 

ELECTRON DATA AE2 AUGUST I S M  IVETTEI 
s----Ce --- 30. INCLINATION CIRCULAR - 1 't- ORBIT 

0 0.5 g/cmz AI. SHIELD 

ALTITUDE (nouticol miles) 

a b 

FIGURE 41. ELECTRON AND BREMSSTRAHLUNG DOSE RATE AS A FUNCTION OF 
ALTITUDE AND SHIELD THICKNESS FOR 30-DEGREE ORBITAL INCLINATION 



E a 

ALTITUDE ~noulicol miles) 
ALTITUDE (nautical m i l 4  

a b 

FIGURE 42. ELECTRON AND BREMSSTRAHLUNG DOSE RATE AS A FUNCTION OF 
ALTITUDE AND SHIELD THICKNESS FOR 60-DEGREE ORBITAL INCLINATION 



en en 

a 

ALTITUDE (mutical mlkt l  

b 

FIGURE 43. ELECTRON AND BREMSSTRAHLUNG DOSE RATE AS A FUNCTION OF 
ALTITUDE AND SHIELD THICKNESS FOR 90-DEGREE ORBITAL INCLINATION 



REFERENCES 

I. 

2. 

3. 

4. 

5. 

6 .  

7 .  

8.  

9. 

10. 

11. 

Burrell,  M. 0. : The Calculation of Proton Penetration and Dose Rates. 
NASA TM X-53063, August 17, 1964. 

Hilberg, R. H. : Radiation Levels on AS-503 Mission - Case 340, Bellcom, 
Inc. , July 11, 1966. 

Coons, D. 0. , and Berry,  C. A. : Radiation Dose Levels for Apollo Crew 
Members , Apollo Application Program , File Memorandum to FA/Tech- 
nical Assistant for Apollo, February 10, 1967. 

Burrell,  M. 0. , and Wright , J. J. : The Calculations of Electron and 
Bremsstrahlung Penetration and Dose Rates. Paper presented at 13th 
Annual Meeting of the American Nuclear Society, San Diego, California. 
June 11 - 15, 1967. 

Ness, N.  F. : The Earth's Magnetic Tail. J. Geophys. Res. , vol 70, 
1965, p. 2984. 

McIlwain, C. E. : Coordinates for Mapping the Distribution of Magnetically 
Trapped Particles. J. Geophys. Res. , vol. 66, no. 11, November 1961. 

St'drmer, C. : Polar Aurora. Oxford University Press , London, 1955. 

Fermi,  E. : Nuclear Physics, Chapter X. University of Chicago P res s ,  
Chic ago , 1 949. 

Benbrook, J. R.; Doherty, W. R.; Sheldon, W. R.; and Thomas, J. R.: 
Computer Codes for Space Radiation Environment and Shielding. Report 
WL TDR-64-71, Vol I, Section 3, The Boeing Company, August 1964. 

Kuhn, E . ;  Payne, W, T. , and Schwamb, F. E . :  Solar Flare Hazard to 
Earth-Orbiting Vehicles. RAC 1395-1 , PCD-TR-64-12 , Republic Aviation 
Corporation, July 28, 1964. 

Balasubrahmanyan, V. K.  ; Hagge, D. E. ; Lubwig, G. H. , and McDonald, 
F: BI : The Multiply-Charged Primary Cosmic Radiation at Solar Minimum, 
1965, X-611-65-480, Goddard Space Flight Center, November 1965. 

56 



REFERENCES (Concluded) 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

Webber, W. R. : An Evaluation of the Radiation Hazard Due to Solar 
Particle Events. Document D2-90469 , The Boeing Company, December 
1963. 

Baker, M. B. : Geomagnetically Trapped Radiation. Rep. SM-47635, 
Douglas Aircraft Corporation, October 1964. 

Hill, C. W. ; Ritchie, W. B. , and Simpson, K .  M . :  Data Compilation and 
Evaluation of Space Shielding Problems. Vol. 3, Rep. ER7777, Lockheed 
Company, April 1966. 

Webber, W. R. : An Evaluation of Solar Cosmic Ray Events During Solar 
Minimum. Document D2-84274-1, The Bosing Company, June 1966. 

Guss , D. E. : Distribution in Heliographic Longitude of Flares Which 
Produce Energetic Solar Particles. Phys. Rev. Letters, vol. 13, 1964, 
p. 363. 

Weddell, J. B. ; Haffner,  J. W. , and Morin, F. J. : Statistical Evaluation 
of Proton Radiation from Solar Flares. Rep. SIB 66-421, North American 
Aviation , Incorporated , May 20 , 1966. 

Webber, W. R. , and Thomas, J. R. : Sunspot Number and Solar Cosmic Ray 
Predictions for Cycle 20 (1965 - 1975) With Preliminary Estimates for 
Cycle 21. Boeing Report D2-113522-1. 

Norman, J.  E. : Estimation of Radiation Hazard Probabilities Due to Solar 
Proton Events During the Maximum Solar Cycle Phase. Summary Progress 
Report SSL-27548-1. Research Laboratories , Brown Engineering Company , 
Incorporated, Huntsville , Alabama, August 31 , 1967. 

Vette, J. I. , et al. : Models of the Trapped Radiation Environment. Vols. 
1 and 2,  NASA SP-3024, 1966. 

Vette,  J. I. , et al. : Models of the Trapped Radiation Environment. Vol. 
3, NASA SP-3024, 1967. 

Bostrom, C. 0. ; Williams, D. J. , and Beall, D. S. : Time Decay of the 
Artificial Radiation Belt. Trans. Am. Geophys. Union, Vol. 46, 1965, 
p. 137. 

NASA-Langley, 1968 - 29 M424 57 



National Aeronautics and Space Administntion 
WASHINGTON, D. C. 

OFFICIAL BUSINESS 
- 

FIRST CLASS MAIL WSTAGE AND FEES PAID 
NATIONAL AERONAUTICS m. 

SPACE ADMINISIRATION 

POSTMASTER: If Undeliverable (Section 158 
Postal Manual) Do Not Retur 

“The aeronautical and space activities of the United States shall be 
conducted so a.r to contribute . . , to the expansion of human knowl- 
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the resdts tbereof .” 

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and technical information considered 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL NOTES: Information less broad in scope but nevertheless of 
importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distribu- 
tion because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Scientific and technical information generated 
under a NASA contract or grant and considered an important contribution to 
existing knowledge. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information derived from or of value to NASA 
activities. Publications include conference proceedings, monographs, data 
compilations, handbooks, sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech- 
nology used by NASA that may be of particular interest in commercial and other 
non-aerospace applications. Publications indude Tech Briefs, Techaology 
Utilization Reports and Notes, and Technology Surveys. 

Drtails on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washington, D.C. PO546 


